
Maven 2
Part 1 – Evolution of the build process

Ondřej Žižka

Brno, February 2009

Agenda of part 1
 Evolution of project build process

● Common steps of build process
● Command line
● Make
● Ant
● Maven

Evolution of the build process
 What do we do during the build process?

 Build:

1) Compile all *.java from src/ to target/classes/
● Use lib/log4j1.2.8.jar in classpath

2) Copy everything that's not *.java from src/ to target/

3) Create .jar from the contents of target/classes
 Clean:

● Delete the target/ directory

Evolution of the build process - cmdline

mkdir -p target/classes/
javac -cp lib/log4j-1.2.8.jar src/ -d target/classes/
cp `find src/ -type f | grep -v *.java` target/classes/
jar -c target/example-1.0.jar target/classes/

rm -r target/

 Compilation, cleaning:

Evolution of the build process - make

CC=g++
CFLAGS=-c -Wall
LDFLAGS=
SOURCES=main.cpp hello.cpp
OBJECTS=$(SOURCES:.cpp=.o)
EXECUTABLE=hello
all: $(SOURCES) $(EXECUTABLE)
$(EXECUTABLE): $(OBJECTS)

$(CC) $(LDFLAGS) $(OBJECTS) -o $@
.cpp.o:

$(CC) $(CFLAGS) $< -o $@

clean:
rm -rf *o hello

 Compilation, cleaning:

Evolution of the build process - Ant
 Ant is (still) most used build tool for Java projects

 Defines targets and their dependencies

 Uses XML “scripts”

 Provides “tasks” to perform in targets
● Easily extensible, many existing tasks

Evolution of the build process - Ant

<?xml version="1.0" encoding="utf8" ?>
<project name="example" default="compile" basedir=".">

 <property name="app.name" value="example"/>
...

 <target name="clean" description="Delete build directory">
 <delete dir="${build.home}" />

 </target>

 <target name="compile" depends="compile">
<mkdir dir="${build.home}/classes/" />
<javac srcdir="${basedir}/src/java" destdir="${build.home}/classes">
 <classpath>

<pathelement location="${basedir}/lib/log4j-1.2.8.jar" />
</classpath>

</javac>
 </target>

...

</project>

Evolution of the build process - Maven
 Becoming de-facto standard in Java world

 Descriptive approach - project's characteristics in pom.xml
 Provides “plugins” to perform various operations

● Easily extensible, many existing plugins

 Leads developers to a standard structure of project files

 Takes care of dependencies
● Standardizes and automatizes their storage and downloading

 Handles projects hierarchy and inheritance

 Unobtrusive – usually only one extra file per project (pom.xml)

Maven's objectives
 Primary goal:

● To allow a developer to comprehend the complete state of a development effort
in the shortest period of time.

 Maven attempts to deal with:
● Making the build process easy
● Providing a uniform build system
● Providing quality project information
● Providing guidelines for best practices development
● Allowing transparent migration to new features

Maven: Advantages
 When creating a project:

● “Factory defaults” fit your needs in many cases

● Unobtrusive – usually only one extra file per project (pom.xml)

● Takes care of many areas of software project development
● Good support for project modularization

 When building a downloaded project:
● Once you have learned Maven, you understand build processes of all Maven projects
● No need to search and download dependencies

● Usually, mvn package really gives you the resulting binaries

● Very good support in most relevant IDEs (Eclipse, NetBeans, IDEA)

Maven: Disadvantages
 Human factor: Incorrect metadata

● When someone makes a mistake, you have to edit metadata by hand in ~/.m2/
 Human factor: Messy central repository

● <repo>/org/foo/bar/bar/ vs. <repo>/bar/bar/
 Very very long and verbose pom.xml

● No wonder - it has to contain all project's information

 Not appropriate when you want to build dependencies from source
● Fedora
● solution: Maven-JPP

Maven vs. Ant + Ivy comparison
 Ant + Ivy: Script-like tool + dependency tool

 So, we can compare only dependency part of Maven.

 Ant + Ivy:
● More freedom, more versatile; But is it really necessary?
● More properly written dependency metadata (at least as cited on Ivy site)
● Ivy uses “configurations” → Maven uses “profiles”; Seems equally powerful.
● Pluggable dependency manager and conflict manager

 Maven:
● Less freedom → less care: Let's rely on defaults
● Version conflict policy: Use the closest in the dependency tree
● Mess in metadata; Ivy site says about Maven:

The only problem some may face is that module descriptors are not always
checked, so some are not really well written.

Maven 2
Part 2 – Introducing Maven 2

Ondřej Žižka

Brno, February 2009

Agenda of part 2
 What is Maven

 Project Object Model (POM)

 Simple Maven project

 Inter-project relations
● Dependencies
● Inheritance
● Modules

 Maven plugins

 Profiles

 Maven repositories

 Maven command line usage

 Maven in JBoss projects

What is Maven
 Apache's description:

● “Maven is a software project management and comprehension tool. Based on the
concept of a project object model (POM), Maven can manage a project's build,
reporting and documentation from a central piece of information.“

 Maven's goal is to standardize the build process with all of it's
aspects and provide easy-to-use tool to perform this process.

 Maven's “sphere of interest” includes:
● Code generation
● Compilation
● Coverage reports
● Integration tests
● Deployment
● IDE integration
● Source code management

● Test database initialization
● Project packaging
● Project's site content generation
● Collaboration
● Issue management (JIRA, ...)
● ...

Project build lifecycle
 When Maven is run, it progresses from the

first lifecycle phase to the specified one.
● `mvn compile` invokes all phases up to

compile.

 Default build lifecycle phases: →

 The phases correspond to the usual build
scenario.

validate
initialize
generate-sources
process-sources
generate-resources
process-resources
compile
process-classes
generate-test-sources
process-test-sources
generate-test-resources
process-test-resources
test-compile
process-test-classes
test
prepare-package
package
pre-integration-test
integration-test
post-integration-test
verify
install
deploy

Some build lifecycle phases
initialize Initialize build state, e.g. set properties or create directories.
compile Compile the source code of the project.
process-classes Post-process the generated files from compilation,
 for example to do bytecode enhancement on Java classes.
test-compile Compile the test source code into the test destination directory
test Run tests using a suitable unit testing framework.
 These tests should not require the code be packaged or deployed.
package Take the compiled code and package it in its distributable format, eg. JAR.
integration-test Process and deploy the package if necessary into an environment
 where integration tests can be run.
verify Run any checks to verify the package is valid and meets quality criteria.
install Install the package into the local repository,
 for use as a dependency in other projects locally.
deploy Done in an integration or release environment, copies the final package
 to the remote repository for sharing with other developers and projects.

Plugins
 Maven is just a shell that invokes plugins “goals” (sim. to Ant's tasks)

 Goals can be bound to the phases of the lifecycle

 Executing goals bound to a phase: mvn <phase>
 Default goal binding:

Plugins
 Both plugin and it's goal's “execution” can be customized

● <configuration/>

 Well known plugins repositories:
● Apache: http://maven.apache.org/plugins/

● “Core” plugins – compiler, clean, jar, ...

● Codehaus: http://mojo.codehaus.org/plugins.html
● jboss – operates Jboss server
● sql – performs SQL operations, puts database into a known state
● xslt – performs XSLT transformations
● cargo – deploys applications (WAR, EAR, ...) to the containers
● findbugs, ...

● EL4J: http://el4j.sourceforge.net/plugins/index.html
● and others...

http://maven.apache.org/plugins/
http://mojo.codehaus.org/plugins.html
http://el4j.sourceforge.net/plugins/index.html

Standard directory layout

|-- pom.xml
|-- target
`-- src
 |-- main
 | `-- java
 | |-- org
 | | `-- jboss
 | | `-- mavenapp
 | | `-- App.java
 | `-- webapp
 | `-- WEB-INF
 | `-- web.xml
 `-- test
 `-- java
 `-- org
 `-- jboss
 `-- mavenapp
 `-- AppTest.java

 All sources are in /src
 All build output goes to /target
 Follows commonly used structure:

www ref

http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

Artifacts – basic elements of project
 Basic construction element is called artifact

 Artifact can be:
● an archive - .jar, .war, .ear, .sar, …

● or a POM – used as a node in the graph of relations between projects.

 Artifacts build up a graph of relations:
● dependencies, parent, modules.

 Each artifact is defined by one XML file – pom.xml – and one directory.

 Minimal pom.xml example:

<project>
 <groupId> org.jboss </groupId>
 <artifactId> myapp </artifactId>
 <packaging> jar </packaging>
 <version> 1.0-SNAPSHOT </version>
</project>

POM - Project Object Model

<project>
 <groupId>org.jboss</groupId>
 <artifactId>myapp</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>

 <build>
<pluginManagement/>

 <sourceDirectory>src/main/java</sourceDirectory>
 <testSourceDirectory />

<resources/>
<outputDirectory>target/classes</outputDirectory>

 <finalName>
 ...
 </build>

 <reporting/>
 <profiles/>
 <repositories/>
 ...
</project>

 Describes the artifact, how to build it, where to put the result, who is
the developer, how to test it, … Defaults taken from the “super-pom”

 Basic structure:

www ref

(org/apache/maven/project/pom-4.0.0.xml)

http://maven.apache.org/guides/introduction/introduction-to-the-pom.html

POM - Project Object Model

www ref

schema from JavaWorld.com

http://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Inter-project relations
<project>

 <dependencies>
 <dependency>
 <groupId>...</groupId>
 <artifactId>...</artifactId>
 <version>...</version>
 </dependency>

...
 </dependencies>

 <parent>
 <groupId>...</groupId>
 <artifactId>...</artifactId>
 <version>...</version>
 </parent>

 <modules>
 <module>...<module>
 ...
 </modules>

</project>

 Dependency: <dependency>
● Use an artifact (a library) in your project

 Inheritance: <parent>
● Share project characteristics

for more artifacts

 Modules: <modules>
● Split integral project

into several artifacts

Dependencies

<project>
 <dependencies>
 <dependency>
 <groupId>org.jboss.jsfunit</groupId>
 <artifactId>jboss-jsfunit-richfaces</artifactId>
 <version>1.0.0.GA-SNAPSHOT</version>
 <scope>compile</scope>
 <classifier>jdk15</classifier>
 <optional>false</optional>
 <exclusions>...</exclusions>
 <type>jar</type>
 </dependency>
 ...
 </dependencies>
</project>

 Project depends on artifacts

 Dependencies are downloaded from repositories

 Dependencies are described in POM: (italics = optional)

www ref

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

 <groupId> – group name
● Usually matches package name.
● Groups together related artifacts of a software project.

 <artifactID> – name of the artifact
● Usually matches final archive file name.

 <version>
● should follow the a.b.c.d[-SNAPSHOT] notation

● -SNAPSHOT is parsed token – this is how Maven recognizes snapshots!

● a.b.c.d is parsed for numbers, used in comparisons

● Range can be used: (1.0,2.0] etc. See www docs.

Dependencies
 <dependency>
 <groupId>org.jboss.jsfunit</groupId>
 <artifactId>jboss-jsfunit-richfaces</artifactId>
 <version>1.0.0.GA-SNAPSHOT</version>
 <scope>compile</scope>
 </dependency>

www ref

http://docs.codehaus.org/display/MAVEN/Dependency+Mediation+and+Conflict+Resolution#DependencyMediationandConflictResolution-DependencyVersionRanges
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

 <scope> – when to use this dependency
● One of: compile (default), test, provided, runtime, system, import
● compile: dependency is available on all classpaths

● provided: like compile, but not packaged; eg. Servlet API for web apps

● runtime: Available for tests, not for compiler; eg. JDBC drivers

● test: avail. only for test phases; typically, testing frameworks like JUnit

● system: like provided, but not downloaded

● import: used in <dependencyManagement> to affect transitional deps.

Dependencies
 <dependency>
 <groupId>org.jboss.jsfunit</groupId>
 <artifactId>jboss-jsfunit-richfaces</artifactId>
 <version>1.0.0.GA-SNAPSHOT</version>
 <scope>compile</scope>
 </dependency>

www ref

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Dependencies
 <dependency>
 <groupId>org.jboss.jsfunit</groupId>
 <artifactId>jboss-jsfunit-richfaces</artifactId>
 <version>1.0.0.GA-SNAPSHOT</version>
 <scope>compile</scope>
 </dependency>

 This is enough information for Maven to:*
● Find the dependency and check available version
● Download if not in local repository
● Use it in proper situations (copilation, tests, packaging)
● Resolve transitive dependencies

 *) if metadata are OK – unfortunately, often they're not :-(

www ref

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Structured project: Modules
 Used to split project to several parts

● In opposite to <parent> inheritance, <modules>
makes the “root” project aware of it's “children” -
building root also builds modules

 Modules are built in order of appearance

 Thus, modules can depend one on each other
● e.g. jsfunit module needs core and one of jbas

<project>
 ...
 <modules>
 <module>core</module>
 <module>jbas4</module>
 <module>jbas5</module>
 <module>jsfunit</module>
 </modules>
</project>

Structured project: Modules

<project>

 <groupId>org.jboss.jopr</groupId>
 <artifactId>jopr-embedded-parent</artifactId>
 <version>1.1.0-SNAPSHOT</version>
 <packaging>pom</packaging>
 <modules>
 <module>core</module>
 <module>jbas4</module>
 <module>jbas5</module>
 <module>jsfunit</module>
 </modules>
</project>

 “Root” pom.xml can also be used as a parent.

 <embjopr>/pom.xml:

Structured project: Modules

<project>

 <!-- Module's "root" project -->
 <parent>
 <groupId>org.jboss.jopr</groupId>
 <artifactId>jopr-embedded-parent</artifactId>
 <version>1.1.0-SNAPSHOT</version>
 </parent>
 <groupId>org.jboss.jopr</groupId>
 <artifactId>jopr-embedded-jsfunit</artifactId>
 <version>1.1.0-SNAPSHOT</version>
 <packaging>war</packaging>
 ...

</project>

 Sub-directories <embjopr>/<module-name>/
contain module's pom.xml

 Example - <embjopr>/jsfunit/pom.xml:

Structured project: Parent

<project>

 <!-- NOTE: We extend the RHQ parent pom, because we essentially
 want all the same base settings - plugins, dependencies, etc. -->
 <parent>
 <groupId>org.rhq</groupId>
 <artifactId>rhq-parent</artifactId>
 <version>1.2.0-SNAPSHOT</version>
 </parent>
 <groupId>org.jboss.jopr</groupId>
 <artifactId>jopr-embedded-parent</artifactId>
 <version>1.1.0-SNAPSHOT</version>
 ...
</project>

 By using <parent>, you can inherit arrangements of other project.
● POM elements merged from parent: plugins (lists, executions w/ matching IDs,

configuration), resources,dependencies, developers

 Relation is “semi-transitive” – parent's parent is my... grandpa :-)

 See EmbJopr's pom.xml:

Dependency conflicts
 What happens when the parent project has different dependency

than the child project has?
● In Maven, every project is built separately, using closest dependency settings.
● When creating app distribution, the behavior depends on the respective plugin.

Dependency Analyzer for Maven
 Creates graphical representation of dependencies

 http://www.jfrog.org/sites/dep-analyzer/1.0/screenshots.html

http://www.jfrog.org/sites/dep-analyzer/1.0/screenshots.html

Maven plugins
 Again - maven is a shell that just executes plugin's goals.

 Plugin's behavior affected mainly by
● Overall plugin <configuration/>
● Specific goal execution <configuration/>

<project>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <compilerVersion>1.5</compilerVersion>
 <source>1.5</source>
 <target>1.5</target>
 <encoding>utf-8</encoding>
 </configuration>
 </plugin>
 </build>
</project>

Maven plugins
 Plugin is also an artifact, though treated specialy:

● Special repository settings

<project>

 <repositories>
 <repository>...</repository>
 </repositories>

 <pluginRepositories>
 <pluginRepository>...</pluginRepository>
 </pluginRepositories>
</project>

Plugin configuration + binding example
 Binding plugin goal to a build phase:

 Plugin vs. goal execution configuration:

<project> <reporting> <plugins> <plugin>

 <!-- Code quality metrics -->
 <artifactId>maven-pmd-plugin</artifactId>

 <configuration>
 <targetJdk>1.5</targetJdk>
 </configuration>
 <executions>
 <execution>
 <phase>validate</phase>
 <goals><goal>cpd</goal></goals>
 <configuration>
 <outputDirectory>target/pmd-reports</outputDirectory>
 </configuration>
 </execution>
 </executions>
</plugin> </plugins> </reporting> </project>

Profiles

<project>
 <profiles>
 <profile>
 <id>my-profile</id>
 <properties>...</properties>
 <build>
 <plugins>...</plugins>
 </build>
 ...
 </profile>
 </profiles>
</project>

 Intended to affect build lifecycle

 Means of affection:
● ${properties} → <properties>...</properties>
● plugin/goal configuration → <build><plugins>...
● dependencies, repositories, and few others

 Activate a profile by: mvn -P<profile-name> ...

Profiles – use cases
 Build / test / create distribution with different libs (dependencies)

● Example: Hibernate's cache and pooling libraries

 Build different mutation of your application
● Example: EmbJopr WAR builds for Jboss AS 4.x and 5.x

 Create app distribution with different files
● Example: Different defaults in a .properties file
● Example: Different Look & Feel (CSS and images)

 Deploy to other server
● Example: Regular internal build / Release and publish on public repository

 Test WAR against different application servers

 ...etc.

Profiles - drawbacks
 Use of profiles makes pom.xml very verbose

● Many of the elements must be repeated

● Not always avoidable by using ${properties}
 Limited posibility to move to profiles.xml
 Bad news: Maven people like it this way

 Good news: You'll get used to it

 Future hopes:
● Short-cutting with XML namespaces (like in Spring)

● XSLT preprocessor for pom.xml

Maven repositories
 Every artifact Maven works with must be in some repository.

 Repository is a storage of Maven artifacts.

 It's has well-defined directory structure and naming schema.

 Full path to an artifact:
<repository>/<groupId-with-slashes>/<artifactId>/<version>/
<artifactId>-<version>[-SNAPSHOT][-<classifier>].<packaging>

Maven repositories
 Local repository: cache of artifacts on local filesystem

● Default: ~/.m2/repository ; override in settings.xml: <localRepository/>
● Gets filled as you download from remote repos; safe to delete any time
● Secret tip: Backup sometimes, and if something goes wrong with SNAPSHOTs, restore.

 Remote repository: Usualy a simple HTTP(S) server
● Use <repositories> and <pluginRepositories> to set where to get artifacts from

 Proxies / caches / searchable indexes:
● Artifactory, Archiva, Nexus (ClassName search!)
● http://jawa11.englab.brq.redhat.com:1212/nexus

http://jawa11.englab.brq.redhat.com:1212/nexus

Maven command line usage
 mvn [options] [<goal(s)>] [<phase(s)>]
 Phases: phases of Maven lifecycle (see before) – e.g. install
 Goals: IDs of plugin goals (see before) – e.g. jboss:start
 Important options:

● -P<profile,...> activates given profiles.

● -D<name=value> defines a property (usage: <target>${name}</target>)

● -U, --update-snapshots bypasses local cache

 Examples:
● mvn clean install – invokes clean phase of the clean lifecycle, then install

phase of the build lifecycle

● mvn javadoc:jar – invokes the jar goal of the javadoc plugin

● mvn -Pjboss4x -Djboss.home=./jboss-eap-4.3.0 install
● mvn clean compile jboss:start test jboss:stop

Maven help tools
 Show plugin configuration options:

● mvn help:describe -DgroupId=org.apache.maven.plugins
-DartifactId=maven-compiler-plugin -Dfull=true

 Show effective POM:
● mvn help:effective-pom

 Show effective settings:
● mvn help:effective-settings

 Show artifact dependencies:
● mvn -X package

Maven project as Hudson job
 Hudson has a Maven plugin

● Possible to create a job using only pom.xml

 However, many times it's easier to run Maven from a bash script
● e.g. when you need to wget / unzip / check out something before running Maven – it's

easier to write few bash lines than to create an extra profile for Hudson.
● Example: Embedded Jopr's Hudson job:

Build JBoss AS, checked out / updated by Hudson
cd jbossas-5.x/build
./build.sh -Dbuild.unsecured=true
cd ../..

Set JBoss AS home dir
export JBOSS_HOME=`pwd`/`ls -d -1 jbossas-5.x/build/output/* | tail -n 1`

cd embjopr
mvn install -Dmaven.test.skip=true -DJBOSS_HOME=$JBOSS_HOME
cd jsfunit
mvn -Pjboss5x install
sleep 5

Maven in JBoss projects
 Currently we're moving most of our project to Maven.

● http://wiki.jboss.org/wiki/Wiki.jsp?page=MavenizationStatus

 Some projects still use Ant, which leads to complexities in build system.

 JBoss projects exploit Maven up to its limits
● Sometimes we have to fall back to calling Ant tasks – see antrunner plugin.

 Seam build:
● All dependencies are built from source and put to jboss.org repository.
● Central Maven repository mirrored to jboss.org.

 Java projects in Fedora/RHEL: Even wilder
● Dependencies parsed from pom.xml, recursively

● Their source code downloaded in .rpm and built into local repository
● Results copied to wherever yum likes them to be
● But, source codes mostly not present in Maven repos
● → Lots of manual work

Maven in JBoss projects
 Citation from Maven site (“What is Maven”):

Maven does encourage best practices, but we realize that some projects may not fit
with these ideals for historical reasons. While Maven is designed to be flexible, to an
extent, in these situations and to the needs of different projects, it can not cater to
every situation without making compromises to the integrity of its objectives.

If you decide to use Maven, and have an unusual build structure that you cannot
reorganise, you may have to forgo some features or the use of Maven altogether.

 From the same page:
Maven is a tool that can now be used for building and managing any Java-based
project. We hope that we have created something that will make the day-to-day work
of Java developers easier and generally help with the comprehension of any Java-
based project.

●

 Which one fits better for us?
● Time will tell...

http://maven.apache.org/what-is-maven.html

Thanks for attention! Questions?

 What is Maven

 Project Object Model (POM)

 Simple Maven project

 Inter-project relations
● Dependencies
● Inheritance
● Modules

 Maven plugins

 Profiles

 Maven repositories

 Maven command line usage

 Maven in JBoss projects

Resources
 Maven book: http://www.sonatype.com/books/maven-book/reference/

 Maven site: http://maven.apache.org/

 Maven tips: http://cvs.peopleware.be/training/maven/maven2/

 Maven based JBoss build system:
● http://jboss.org/community/docs/DOC-11358

 Codehaus plugins: http://mojo.codehaus.org/

 SoftEU.cz: http://blog.softeu.cz/prednasky/2006/maven/ - czech intro

http://www.sonatype.com/books/maven-book/reference/
http://maven.apache.org/
http://cvs.peopleware.be/training/maven/maven2/
http://jboss.org/community/docs/DOC-11358
http://mojo.codehaus.org/
http://blog.softeu.cz/prednasky/2006/maven/

Maven 2
Part 3 – How to do … with Maven 2?

… see you later!

Ondřej Žižka

Brno, February 2009

Agenda of part 3
 Order of goals execution

 Order of repositories being queried for artifacts

 How do I put files in .jar (on classpath)?

 How to Mavenize a legacy project? (example: Smack library)

 Maven plugins – finest selection :-)
● Surefire
● Cargo

 ...stay tuned.

Deploying a file as an artifact

mvn deploy:deploy-file
-Durl=scpexe://yourhost.com/path/to/maven2/repository
-DrepositoryId=somerepo-ssh
-DgroupId=javax.j2ee
-DartifactId=javaee
-Dversion=5.0.FCS
-Dpackaging=jar
-Dfile=e:/temp/javaee-5.0.FCS.jar

Maven 2
Part 4 – IDEs support for Maven
...demonstrations.

Ondřej Žižka

Brno, February 2009

Agenda of part 4
 NetBeans Maven support: Mevenide

● Project structure
● Editing pom.xml

● POM XSL
● Plugin configuration probe
● Repository artifacts probe

● Enabling profiles, binding goals to IDE actions

 IDEA Maven support
● http://plugins.intellij.net/plugin/?id=1166

 Eclipse Maven support
● http://m2eclipse.codehaus.org/

http://plugins.intellij.net/plugin/?id=1166
http://m2eclipse.codehaus.org/

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 41
	Snímek 42
	Snímek 43
	Snímek 44
	Snímek 45
	Snímek 46
	Snímek 47
	Snímek 48
	Snímek 49
	Snímek 50
	Snímek 51
	Snímek 52
	Snímek 53
	Snímek 54

